

TMC-34, a New Macrolide Antifungal Antibiotic

JUN KOHNO, MAKI NISHIO*, KIMIO KAWANO,
SHIN-ICHI SUZUKI and SABURO KOMATSUBARA

Lead Generation Research Laboratory at Toda,
Tanabe Seiyaku Co., Ltd.,
2-2-50, Kawagishi, Toda-shi, Saitama 335, Japan

(Received for publication June 9, 1995)

In the course of screening for antifungal agents active against *Candida albicans*, a new antifungal antibiotic has been isolated from an actinomycete strain A-3030 and was designated TMC-34. Spectroscopic analysis revealed that TMC-34 belonged to the class of 32-membered macrolide antibiotics represented by copiamycin^{1,2)} and neocopiamycin³⁾. This paper describes the production, isolation, physico-chemical properties, structure elucidation and biological activity of TMC-34.

The producing strain A-3030 was isolated from a soil sample collected in Fukuchiyama, Kyoto Prefecture, Japan, and taxonomic studies indicated that the strain belonged to the genus *Streptomyces*. This strain was cultured in 500-ml Erlenmeyer flasks containing 70 ml of a production medium containing glucose 0.5%, soluble starch 2.0%, glycerol 2.0%, soybean meal 2.0%, yeast

Fig. 1. Isolation and purification of TMC-34.

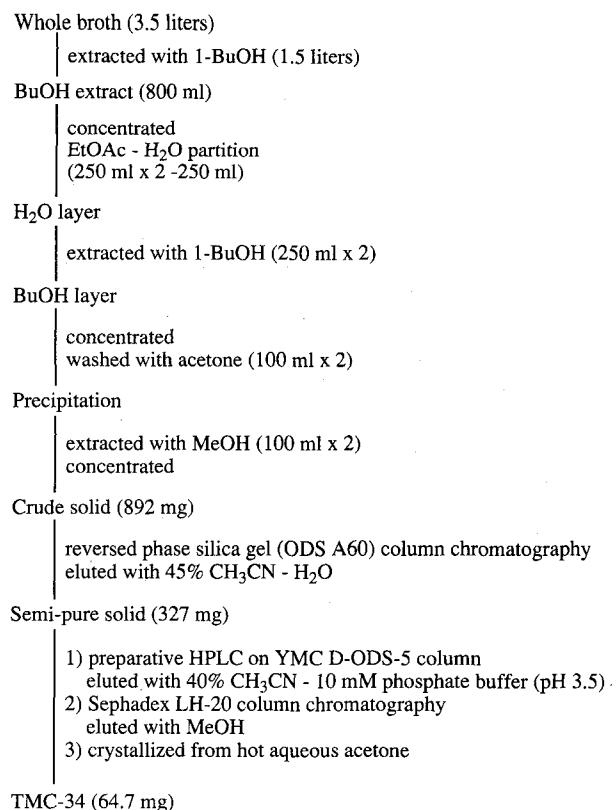
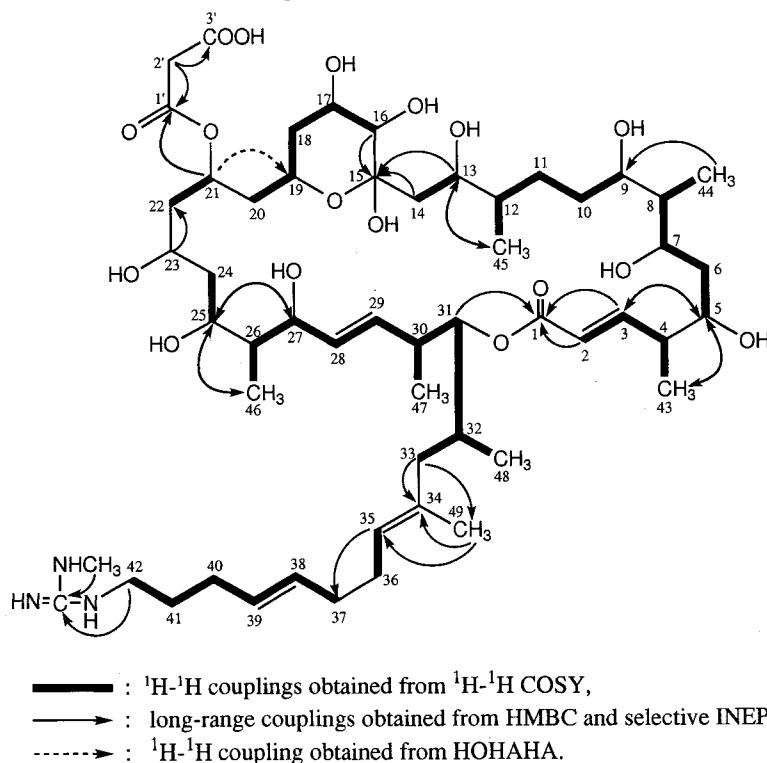


Table 1. ¹³C and ¹H NMR data of TMC-34^a.

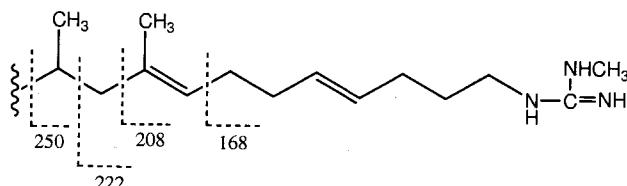

No.	¹³ C (δ)	¹ H (δ)	No.	¹³ C (δ)	¹ H (δ)
1	168.2 (s)		25	68.9 (d)	4.14 (1H, m)
2	123.3 (d)	5.89 (1H, d, 15.6) ^b	26	45.5 (t)	1.45 (1H, m)
3	152.5 (d)	6.92 (1H, dd, 15.6, 9.0)	27	75.8 (d)	3.88 (1H, m)
4	43.4 (d)	2.47 (1H, m)	28	134.7 (d)	5.47 (1H, m)
5	75.3 (d)	3.75 (1H, m)	29	134.9 (d)	5.54 (1H, m)
6	39.4 (t)	1.46 (1H, m)	30	40.1 (d)	2.52 (1H, m)
		1.51 (1H, m)	31	80.3 (d)	4.75 (1H, dd, 7.0, 4.3)
7	74.8 (d)	3.75 (1H, m)	32	33.5 (d)	2.00 (1H, m)
8	44.6 (d)	1.52 (1H, m)	33	45.2 (t)	1.77 (2H, m)
9	72.1 (d)	3.91 (1H, m)	34	134.1 (s)	
10	33.4 (t)	1.56 (1H, m)	35	127.7 (d)	5.13 (1H, m)
		1.67 (1H, m)	36	29.0 (t)	2.09 (2H, m)
11	30.6 (t) ^c	1.38 (1H, m)	37	33.7 (t)	2.08 (2H, m)
		1.45 (1H, m)	38	132.5 (d)	5.54 (1H, m)
12	40.7 (d)	1.61 (1H, m)	39	130.1 (d)	5.45 (1H, m)
13	72.6 (d)	3.84 (1H, m)	40	30.7 (t) ^c	2.09 (2H, m)
14	41.3 (t)	1.83 (2H, m)	41	29.8 (t)	1.65 (2H, m)
15	99.7 (s)		42	41.9 (t)	3.16 (2H, t, 7.1)
16	77.1 (d)	3.36 (1H, d, 9.1)	43	16.5 (q)	1.13 (3H, d, 6.9)
17	69.7 (d)	3.89 (1H, m)	44	10.5 (q)	0.88 (3H, d, 7.0)
18	41.6 (t)	1.30 (1H, m)	45	14.5 (q)	0.91 (3H, d, 6.9)
		1.90 (1H, ddd)	46	11.2 (q)	0.79 (3H, d, 7.0)
19	65.6 (d) ^d	4.11 (1H, m)	47	17.8 (q)	0.98 (3H, d, 6.9)
20	42.0 (t)	1.67 (1H, m)	48	14.5 (q)	0.86 (3H, d, 6.6)
		1.72 (1H, m)	49	16.3 (q)	1.58 (3H, brs)
21	70.9 (d)	5.22 (1H, m)	guanido	158.3 (s)	
22	44.7 (t)	1.73 (1H, m)	NCH ₃	28.3 (q)	2.82 (3H, s)
		1.80 (1H, m)	1'	171.6 (s)	
23	65.7 (d) ^d	3.88 (1H, m)	2'	46.9 (t)	3.23 (2H, s)
24	43.2 (t)	1.55 (1H, m)	3'	174.1 (s)	
		1.62 (1H, m)			

^a ¹³C NMR (100 MHz) and ¹H NMR (400 MHz) were measured in CD₃OD at 30 °C.

^b Proton number, multiplicity and coupling constants in Hz are indicated in parenthesis.

^{c,d} May be exchangeable.

Fig. 2. Structure of TMC-34.


extract 0.2% and CaCO_3 0.3% (pH 7.0 before autoclaving). The flasks were incubated at 27°C for 5 days on a rotary shaker at 220 rpm. The production of the antibiotic was monitored by antifungal activity against *C. albicans* ATCC 48130.

The isolation procedure for TMC-34 is summarized in Fig. 1. TMC-34 was extracted from the fermentation broth with 1-butanol and was purified by solvent partition, precipitation and repeated column chromatography followed by crystallization from hot aqueous acetone.

TMC-34 was obtained as white fine needles and was soluble in dimethyl sulfoxide, pyridine and lower alcohols but hardly soluble in other organic solvents and water. TMC-34: MP 146~148°C (dec); $[\alpha]_D^{20} +18^\circ$ (*c* 0.29, MeOH); UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (ϵ) 205 (17,600); IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} 3380, 2970, 2940, 1710, 1650, 1600, 1380, 1290, 1245, 1145, 1070, 980; FAB-MS m/z 1,056 ($\text{M} + \text{H}$) $^+$; Elemental analysis, Calcd for $\text{C}_{54}\text{H}_{93}\text{N}_3\text{O}_{17} \cdot 2\text{H}_2\text{O}$: C 59.37, H 8.95, N 3.85. Found: C 59.03, H 8.92, N 3.70; Positive color reaction: iodine vapor and ammonium molybdate-sulfic acid reagents; Negative color reaction: ninhydrin reagent; Rf 0.09 (silica gel, Merck Art. No. 5715, 1-butanol - acetic acid - water (3:1:1)).

TMC-34 showed an absorption maximum at 205 nm in the UV spectrum, suggesting the presence of α,β -unsaturated ester group in this structure. The IR spectrum suggested the presence of a guanidine group (1650 and 1600 cm^{-1}). The molecular formula of TMC-34 was determined as $\text{C}_{54}\text{H}_{93}\text{N}_3\text{O}_{17}$ based on FAB-MS, ^1H and ^{13}C NMR and elemental analysis data.

Fig. 3. FAB-MS fragmentations of TMC-34.

The ^1H and ^{13}C NMR data of TMC-34 are shown in Table 1. The ^{13}C NMR spectrum displayed 54 signals composed of $\text{CH}_3-\text{C} \times 7$, $\text{CH}_3-\text{N} \times 1$, $\text{CH}_2-\times 16$, $\text{CH}-\times 17$, $\text{C}=\text{C} \times 1$, $\text{CH}=\times 7$, $\text{C}=\times 2$ and carbonyl $\text{C} \times 3$. The structure of TMC-34 was determined based on the C-H connectivities which was elucidated by ^1H - ^1H COSY, HMQC, HMBC, selective INEPT and HOHAHA spectra (Fig. 2). The position of C-34 double bond was confirmed by the fragment ion m/z 168 and 208 of the FAB-MS as shown in Fig. 3. The configuration of the double bond was revealed to be *E* by the observation of NOE between 36-H and the protons of 49-CH₃. The position of the hemiester (C-1') was assigned to C-21 based on the observation of long range couplings between H-21-C-1' and H-21-H-19.

The determined structure of TMC-34 closely resembles those of copiamycin^{1,2)} and neocopiamycin³⁾. TMC-34 is considered to be 34,35-dedihydro analog of copiamycin, although the position of malonic hemiester has not been decided in copiamycin.

Table 2. Antimicrobial spectra of TMC-34.

Test organisms	MIC (μg/ml)
<i>Candida albicans</i> ATCC 48130	3.1
<i>Cryptococcus neoformans</i> 145A	1.6
<i>Aspergillus fumigatus</i> TUKUBA	3.1
<i>Trichophyton mentagrophytes</i>	3.1
<i>Trichophyton rubrum</i>	1.6
<i>Staphylococcus aureus</i> 209P JC-1	>100
<i>Staphylococcus epidermidis</i> Kawamura	>100
<i>Enterococcus faecalis</i> ATCC 29212	>100
<i>Bacillus subtilis</i> ATCC 6633	>100
<i>Escherichia coli</i> NIHJ JC-2	>100
<i>Klebsiella pneumoniae</i> PCI-602	>100
<i>Proteus vulgaris</i> IID 874	>100
<i>Morganella morganii</i> Kono	>100
<i>Pseudomonas aeruginosa</i> 35R	>100

MIC values were determined by agar dilution method.

For yeasts and fungi: 10^6 cells or spores/ml, 27°C.

For bacteria: 10^6 cfu/ml, 37°C.

The antimicrobial spectrum of TMC-34 is shown in Table 2. TMC-34 was active against yeasts and filamentous fungi but not active against bacteria. TMC-34 showed no cytotoxicity against human colon carcinoma HCT-116 and human leukemia HL-60 at 5.0 μg/ml.

Acknowledgment

We express our thanks to Dr. AKIO KINUMAKI and associates for measuring spectral data, to Dr. MOTOAKI OHASHI and associates for determination of *in vitro* antimicrobial activities. We also thank Dr. T. TOSA and Dr. K. KAWASHIMA for their encouragement in our study.

References

- 1) ARAI, T.; S. KURODA, H. OHARA, Y. KATO & H. KAJI: Copiamycin, a new antifungal antibiotic derived from *S. hygroscopicus* var. *crystallogenesis*. *J. Antibiotics*, Ser. A 18: 63~67, 1965
- 2) FUKUSHIMA, K.; T. ARAI, S. IWASAKI, M. NAMIKOSHI & S. OKUDA: Studies on macrocyclic lactone antibiotics. VI. Skeletal structure of copiamycin. *J. Antibiotics* 35: 1480~1494, 1982
- 3) ARAI, T.; J. UNO, I. HORIMI & K. FUKUSHIMA: Isolation of neocopiamycin A from *Streptomyces hygroscopicus* var. *crystallogenesis*, the copiamycin source. *J. Antibiotics* 37: 103~109, 1984